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P.O. Box 808, L-414,
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We report on large-scale applications of the ab initio, no-core shell model with
the primary goal of achieving an accurate description of nuclear structure from
the fundamental inter-nucleon interactions. In particular, we show that realistic
two-nucleon interactions are inadequate to describe the low-lying structure of 0B,
and that realistic three-nucleon interactions are essential.

1. Introduction

An important goal in the study of nuclear structure is to answer the ques-
tion: Do we really understand how nuclei are put together? Towards this
end, we wish to formulate a complete description of the properties of com-
plex nuclei from first principles. In particular, we wish to determine if our
knowledge of the fundamental interaction between pairs of nucleons is suffi-
cient to describe the rich and complex structure observed in nuclei. This is
an extremely difficult enterprise, and has really only been accomplished for
the lightest of nuclei. Thus far, Faddeev-like''? approaches and the hyper-
spherical formalism®* have been applied to three- and four-body systems,
while Monte Carlo methods®® have now been applied to systems with up
7. Also, the coupled-cluster expansion method® has been
applied to 60. Here, we utilized new developments in many-body theory
and the exceptional computational power of the ASCI system at LLNL to
perform a study of nuclear structure from first principles, i.e., an ab initio
approach, for nuclei throughout the p-shell.

to ten nucleons
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2. Effective interactions and the shell model

The basic task at hand is to obtain solutions to the standard eigenvalue
problem

(}AI - E,,)\I’,, =0, (1)

where E, is the desired eigenvalue, H is the Hamiltonian, and ¥, is the
eigenfunction. One starting point for solving Eq. (1) is the interacting
shell-model®, where we introduce a set of orthogonal basis states ¢; to
construct the exact solution, i.e., ¥, = ). c,;¢;. Solutions to Eq. (1) can
then be obtained from a set of coupled equations that can be solved using
matrix diagonalization techniques. The primary difficulty encountered is
that because of the short-range repulsion in the nucleon-nucleon interaction,
a basis of infinite dimension is required.

This infinite basis problem can, in principle, be circumvented by the
use of effective-interaction theory. First, one chooses manageable subset of
the original basis states, which is defined by the operator ﬁ’, leading to the
slightly different eigenvalue problem

(ﬁeff — E,,)P\I’,, =0, (2)

where PU, is the projection of the exact solution onto the chosen model
space, E, is again the eigenvalue, and H, #5 is an effective Hamiltonian that
yields the ezact solution of Eq. (1). The excluded space is then usually
defined by the operator Q, with P+ Q = 1, P2 = P, Q? = (), and
PQ=QP=0.

An important feature of H, ¢# is that it is composed of two-, three-, ...,
n-body components even if the fundamental interaction is only pair-wise.
The power of H.yy is that it may provide a mechanism to carry out compu-
tationally tractable calculations while including the relevant physics. For
most potentials, the dominant correlations in the effective interactions are
at the two-body level, but for smaller P-space, the higher-body correlations
are essential for a correct result.

Here, we utilized a unitary transformation due to Lee and Suzuki'® to
derive the effective interaction. This formalism is the foundation for the
highly successful no-core shell model (NCSM)'112. The procedure is based
on finding the transformation, e, to the Hamiltonian so that the P- and
@-spaces for the many-body problem are decoupled, i.e.,

Qe SHe P = 0. (3)
Strictly speaking, in this form, H, ## is not unitary, but can be made so.
Explicit formulae for the n-body matrix elements are given by Egs. (9) and
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(10) in Ref. 2. Two important features are evident. First, in the limit that
P 1, the effective interaction tends to the bare interaction. Second, a
subset of exact n-body solutions are required to determine the ﬁg?} These
exact solutions may be obtained by any method, e.g., large-basis shell-model
calculations utilizing either the bare interaction or an (n — 1)-body effective
interaction.

Our calculations begin with a two-body (also plus three-body) Hamil-
tonian for the A-nucleon system, which depends on the intrinsic coordi-
nates alone. We utilize realistic interaction potentials that are derived
from nucleon-nucleon scattering data. To facilitate our calculations, we in-
troduce an A-nucleon harmonic-oscillator Hamiltonian acting only on the
center-of-mass, whose effect is subtracted from the many-body calculation.
The primary advantages of the harmonic oscillator are that it acts as pseudo
mean field providing a convenient basis for expanding the many-body wave
function and that the relative motion of the center-of-mass can be sepa-
rated from the intrinsic degrees of freedom exactly. Within the harmonic-
oscillator basis, we specify the P-space, designated by the maximum num-
ber, Nyqz, of oscillator quanta excitations, and construct the A-body ba-
sis. We then obtain the eigenvalues, E,, using a shell-model code. This
amounts to diagonalizing a symmetric matrix, whose dimensions are given
by the number of A-body basis states. Although the dimensions can be
quite large, efficient numerical techniques, such as Lanczos'®, exist that
yield the lowest eigenvalues. The parameters governing our convergence
are then: N,,,., defining the model-space; n, the number of clusters in the
effective interaction; and b = \/m$Q/h, the oscillator parameter setting the
physical scale. Ideally, once convergence is achieved, the NCSM solution is
independent of these parameters. In practice, however, our best solution is
obtained for the largest N4, that is computationally feasible and a value
of the oscillator parameter where the binding energy is least sensitive.

In general, computational limitations impose a compromise in the choice
of Nypes and H é?} This is due to the fact that for each increment in Ny, 4,
the number of A-body states increases dramatically. While for larger n, the
number of interaction matrix elements increases and the sparsity of matrix
decreases. In addition, the effective interaction itself is more difficult to
evaluate for increasing n and/or Ny, ,,. To illustrate the level complexity of
the three-body calculations, for N, ., = 4, 39,523,066 3-particle interaction
matrix elements are needed. In this space, the number of M-scheme 10-
body configurations for °B with JT = 0% is 581,740, and the resultant
matrix to be diagonalized has over 2.2 x 10° non-zero elements.
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Figure 1. Comparison of the NCSM and GFMC spectra obtained for the Argonne
AVS8' potential. The NCSM spectra are shown as a function of the model size denoted
by NmaxhS2.

3. Nuclear Structure Calculations

Over the past few years, several extensive studies have been performed
with the NCSM using realistic NN-interactions such as the Argonne AV8'
potentials® and CD-Bonn'4. These include first the ab initio applications!'®
for 12C, an extensive study of A=6 nuclei'®, an examination of the nature of
excited states in 8Be, and a recent large-basis application for A=10 nuclei'®.
The study with A = 6 provides an excellent example of the convergence and
the utility of the no-core shell model'8. In particular, in Fig. 1, we compare
the NCSM spectrum for ®Li (as a function of the model space Np,,;) using
the Argonne AV8' potential with results obtained from the GFMC method.
Overall, there is good agreement between the two methods. Also, as will
be shown below, the converged NCSM value for the total binding energy
6Li is agreement to within 400 keV of the GFMC calculation.

The inclusion of higher-body clusters generally improves the overall
convergence'®. The Binding energies of the nuclei éLi, ®Be, and '°B are
shown in Fig. 2. On the left-side of the figure the binding energies are plot-
ted as a function of the oscillator parameter, which effectively defines the
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Figure 2. Calculated ground-state energy of °Li (upper panel), 8Be (middle panel) and
10B (lower panel) using the AV8’ NN potential with Coulomb. Results using the two-
body effective interaction and the three-body effective interaction in basis spaces up to
672 in the range of HO frequencies of A2 = 8 — 28 MeV are shown and compared to the
GFMC results from Ref. 6. On the rhs, the energies at the HO frequency minima as a
function of Npqz are plotted.

size of the nucleus. The figure shows parabolas for the various model spaces,
which are denoted by the Np,,, value, and with two-body (Vaers - dotted
lines) and three-body (Vsers - solid lines) effective interactions. In general,
the behavior on the oscillator parameter is lessened (flatter parabola) as
either the model space size increases or when more clusters are included in
the effective interaction. The “best” result for a given model space is chosen
in the region exhibiting the least dependence on the oscillator parameter.
These “best” values are then plotted on the right-side of the figure as a
function of the model space Npax and compared with the results from the
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GFMC method (full solid lines with a dotted line band denoting the GFM
uncertainty). In general, for any given value of Npax, faster convergence is
achieved with higher clusters included in H.r¢. In addition, we note that
the NCSM calculation with the two-body effective interaction still differs
from the GFMC result by ~ 1.8 MeV even for the largest model space. On
the other hand, the three-body effective interaction results are in better
agreement for smaller model spaces. Given that 8Be is actually unbound,
and is two alpha-particle resonance, this suggests that the three-body effec-
tive interactions includes more correlations into the wave function. Overall,
the results obtained with the three-body clusters in the effective interaction
are in agreement with the GFMC calculations to within 400 keV.
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Figure 3. Comparison of low-lying spectrum of 9B obtained with the AV8' two-nucleon
interaction alone(left side) and with the Tucson-Melbourne three-nucleon force (right
side)with experiment.
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With confidence in convergence, we now turn to a more systematic
study of the structure of light nuclei. A particularly salient example is
10B. We show the specturn obtained with the AV&' in Fig. 3 (using a three-
body effective interaction, Vzcs¢) in comparison with experiment. The most
striking feature is that the ground state (37) and the first excited state (1)
are reversed in order. We must now conclude that realistic two-nucleon
forces fail to describe the low-lying structure of 1°B. Indeed, this is a feature
that appears to be common to all the realistic nucleon-nucleon forces. This
is the first direct evidence that, in addition to providing extra binding,
three-nucleon forces also impact nuclear structure.

We are then forced to conclude that a proper description of nuclear
structure must a include so-called “true” three-nucleon force. Note that
these are quite different from the three-body clusters that we included in
the effective interaction, as these term are actually induced because of the
effect of the finite model space. We have recently carried out calculations
including the Tucson-Melbourne three nucleon force?® for 1°B. The results
are shown in Fig. 3, where better agreement with the experimental spec-
trum is obtained, In particular, the ordering of the first two states is now
correct. Overall, one finds that the three-nucleon interactions has spin-orbit
components that play an important role in determining the structure of nu-
clei in the region 10 < A < 15. At this stage, investigations are underway to
determine if the remaining disagreement in Fig. 3 is due to: i) convergence
of the three-body effective interaction, ii) the many-body model space, and
iii) the form of the three-nucleon interaction itself.

4. Conclusions

Substantial progress has been made towards an exact description of nuclear
structure. In this work, we describe the ab initio, no-core shell model and
recent results. In particular, we find that realistic NN interactions by them-
selves are inadequate and that three-nucleon forces play an important role
in determining nuclear properties. Further research is currently underway.

5. Acknowledgements

This work was performed under the auspices of the U.S. Department of
Energy by the University of California, Lawrence Livermore National Lab-
oratory, under contract No. W-7405-Eng-48. This project received support
through a Laboratory Directed Research and Development grant, tracking
No. 00-ERD-028.



July 17,2003 17:10 WSPC/Trim Size: 9in x 6in for Proceedings ormand

References

1.

s~ w

~

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.
20.

L.D. Faddeev, Zh. Eksp. Teor. Fiz. 39, 1459 (1960) [Sov. Phys. JETP 12,
1014 (1961)]; O.A. Yakubovsky, Yad. Fiz. 5, 1312 (1966) [Sov. J. Nucl. Phys.
5, 937 (1967)].

. H. Kamada and W. Glockle, Nucl. Phys. A548, 205 (1992); J.L. Friar, G.L.

Payne, V.G.J. Stoks, and J.J. de Swart, Phys. Lett. B 311, 4 (1993); H.
Witala, D. Hiiber, and W. Gldkle, Phys. Rev. C49, R14 (1994); A. Nogga,
D. Hiiber, H. Kamada, and W. Glokle, Phys. Lett. B 409, 19 (1997); W.
Glokle and H. Kamada, Phys. Rev. Lett. 71, 971 (1993).

M. Viviani, A. Kievsky, and S. Rosati, Few-Body Syst. 18, 25 (1995).

N. Barnea, W. Leidermann, and G. Orlandini, Nucl. Phys. A650, 427 (1999).
J. Carlson, Phys. Rev. C36, 2026 (1987); C38, 1879 (1988); J. Carlson and
R. Schiavilla, in Few-Body Systems, suppl. 7, Ed. by B.L.G. Bakker and R.
van Dantzig (Springer-Verlag, 1994) p. 349.

B.S. Pudliner et al, Phys. Rev C56, 1720 (1997); R.B. Wiringa, Nucl. Phys.
A631, 70c (1998); R.B. Wiringa, S.C. Pieper, J. Carlson, and V.R. Pand-
haripande, Phys. Rev. C62, 014001 (2000); S.C. Pieper, V.R. Pandharipande,
R.B. Wiringa, and J. Carlson, Phys. Rev. C64, 014001 (2001).

S.C. Pieper, private communication.

J.H. Heisenberg and B. Mihaila, Phys. Rev. C59, 1440 (1999); B. Mihaila
and J.H. Heisenberg, Phys. Rev. C61, 054309 (2000); B. Mihaila and J.H.
Heisenberg, Phys. Rev. Lett. 84, 1403 (2000).

P.J. Brussaard and P.W.M. Glaudemans, Shell-model applications in nuclear
spectroscopy, (North-Holland, Amsterdam, 1977); R.D. Lawson, Theory of
the nuclear shell model, (Clarendon Press, Oxford, 1980).

K. Suzuki and S.Y. Lee, Prog. Theor. Phys. 64, 2091 (1980); K. Suzuki,
Prog. Theor. Phys. 68, 246 (1982).

P. Navritil and B.R. Barrett, Phys. Rev. C57, 562 (1998); P. Navrétil and
B.R. Barrett, Phys. Rev. C59, 1906 (1999).

P. Navratil, G.P. Kamuntavicius, and B.R. Barrett, Phys. Rev. C 61, 044001
(1998).

J.H. Wilkinson, The Algebraic Eigenvalue Problem, (Clarendon Press, Ox-
ford, 1965).

R. Machleidt, F. Sammarruca and Y. Song, Phys. Rev. C53, 1483 (1996).
P. Navrétil, J.P. Vary, and B.R. Barrett, Phys. Rev. Lett. 84, 5728 (2000);
P. Navrétil, J.P. Vary, and B.R. Barrett, Phys. Rev. C62, 054311 (2000).

P. Navratil, J.P. Vary, W.E. Ormand, and B.R. Barrett, Phys. Rev. Lett. 87,
172501 (2001).

E. Caurier, P. Navratil, W.E. Ormand, and J.P. Vary, Phys. Rev. C64,
051301 (2001)

E. Caurier, P. Navritil, W.E. Ormand, and J.P. Vary, Phys. Rev. C66,
024314 (2002).

P. Navratil and W.E. Ormand Phys. Rev. Lett. 88, 152502 (2002)

S.A. Coon, M.D. Scadron, P.C. Mcname, B.R. Barrett, D.W.E. Blatt, B.M.J.
McKellar, Nucl. Phys. A317, 242 (1979).



